

Thermal inactivation of bacterial spores using a precision temperature control system

Wayne W. Schubert¹, Maria Camasmie², Madeline Koldos², Siu Hay Tai², Paul D. Ronney²

¹Jet Propulsion Laboratory, California Institute of Technology
² University of Southern California

COSPAR 19th July 2018 PPP.3-0010-18

© 2018 All rights reserved NASA funding acknowledged.

Concept for Sample Return

Pre-decisional: for information and discussion only.

NASA HQ, Notional MSR Slide, Zurbuchen

Evaluation for a specific step in breaking-the-chain for returning Mars Samples

- The current notional Mars sample return architecture calls for means to keep surfaces exposed to Mars conditions and Mars dust separated from the hardware that would return to Earth.
- A double-walled sample containment system will provide a physical barrier to most of the sample return container, except a small zone where the container is to be sealed.
- The current baseline plan is to seal the container by a brazing process.
- Brazing has a wide range of possible temperatures (300 700°C).
- This work was undertaken to understand if the lower temperatures are good options for a brazing process with respect to possible contamination by viable microbes.

Approach for a single step in breaking-the-chain

- Our approach was to expose biological indicators to similar heating profiles anticipated from brazing processes.
- Sealing a Mars Sample Container is expected to be a rapid application of heat to Mars exposed surfaces.
- An apparatus previously designed for rapid heating was refurbished for this work.

Precision Heating Apparatus Design Considerations

- Provide a method to control the heat exposure and temperature profile to model anticipated rapid heating scenarios
- Control complex-shaped heating profiles for temperatures from ambient to 500°C
- Heating by tungsten-halogen lamps
- Temperature of the substrate monitored in each run
- Capability to use vacuum or special atmospheric gas mixes

Planck's curve describing the density of electromagnetic radiation emitted by a blackbody

Merchant, John. "Infrared Temperature Measurement Theory and Application." OMEGA Engineering

Emissivity of Silicon

Emissivity of silicon as a function of temperature and wavelength (T. Sato, Jap. J. Appl. Phys. 6, 339-347 (1967)).

Silicon wafer substrate

Features:

- 100 uM (very thin) so permits rapid heating
- Thermal conductivity is 10x that of stainless steel so permits even heating
- Emissivity Profile minimizes heat loss
- Biologically inert
- Smooth flat surface

System Diagram

Precision Heating Apparatus

Sample exposure platform

Pyrometer & Thermocouple Calibration

• Pyrometer vs. Thermocouple Temperature Linear (Pyrometer vs. Thermocouple Temperature)

Selection of Test Organisms

- Bacterial endospores are very heat resistant and serve as a surrogate to demonstrate the effectiveness of the heating process.
- Spores from strains selected for this study:
 - Bacillus atrophaeus ATCC 9372
 - Standard biological indicator strain for heat microbial reduction
 - Bacillus sp. ATCC 29669
 - Most Heat resistant spore for testing in our collection
 - Viking-era isolation from KSC
 - Considerable experience with this spore

Design of Heating Profiles

- The sealing techniques likely to be employed will probably be very quick, perhaps less than a minute heat up time.
- An apparatus originally designed for testing of microorganisms under atmospheric entry heating profile was chosen.
 - Rapid heating capability
 - Controllable cycle profiles
 - Rapid cool-down
 - Optional vacuum exposure

Example exposure profiles

Standard biological indicator bacterial spores are inactivated at temperatures of 200°C

Spore Inactivation, Rapid Heating Profile Bacillus atrophaeus

Population *Bacillus atrophaeus* spores

Temperature Maximum (deg. C)

Heat resistant bacterial spores are inactivated at temperatures of 225°C or greater

Summary

- For Mars sample return break-the-chain, rapid heating profiles are sufficient to inactivate Earth bacterial spores at temperatures of 225°C and above.
- This provides a temperature regime that can be used for planning sealing methods by brazing.
- The designed apparatus was able to evaluate Bacillus spore inactivation:
 - Bacillus atrophaeus spores were inactivated at 200°C and above.
 - Bacillus sp. ATCC 29669, heat resistant spores were inactivated at 225 °C and above.
- Small Mars-exposed exterior zones of a sample canister could be "sterilized" by the rapid application of heat.
- The designed apparatus reaches target temperatures of 425+ °C and can to be programmed to mimic almost any anticipated temperature profile.

Acknowledgements

- This work was funded by the NASA Mars Program Subcontract 15797747 dated 7/5/2017, "Study of Thermal Inactivation of Bacterial Spores Using a Precision Temperature Control System."
- Collaborative work was carried out at the University of Southern California and the Jet Propulsion Laboratory, California Institute of Technology.
- © 2018 All rights reserved